CANN 组合库深度解析:PyPTO与Ascend-C的并行Tile操作与C算子开发协同
并行Tile操作和C算子开发是NPU编程的两个重要方向。PyPTO(Python Parallel Tile Operation)与Ascend-C(C算子开发)如何协同工作?如何实现高效的并行Tile操作和C算子开发?本文探讨PyPTO与Ascend-C的协同机制,以及如何通过两者的配合实现高性能的NPU编程。没有协同:Python Tile操作和C算子开发各自进行 → 性能提升有限有协同:Py
本文基于CANN开源社区的pypto和ascend-c仓库进行技术解读
CANN组织地址:https://atomgit.com/cann
pypto仓库地址:https://atomgit.com/cann/pypto
ascend-c仓库地址:https://atomgit.com/cann/ascend-c
前言
并行Tile操作和C算子开发是NPU编程的两个重要方向。PyPTO(Python Parallel Tile Operation)与Ascend-C(C算子开发)如何协同工作?如何实现高效的并行Tile操作和C算子开发?
本文探讨PyPTO与Ascend-C的协同机制,以及如何通过两者的配合实现高性能的NPU编程。
什么是组合并行Tile操作C算子开发
PyPTO与Ascend-C的组合:
没有协同:
Python Tile操作和C算子开发各自进行 → 性能提升有限
有协同:
Python Tile操作和C算子开发协同进行 → 性能大幅提升
架构:
NPU编程
↓
PyPTO(并行Tile操作)
↓
Ascend-C(C算子开发)
↓
NPU硬件
核心概念
1. 并行Tile操作
并行Tile操作:
#include "pypto/pypto.h"
// Tile配置
typedef struct {
int tile_size_x; // Tile大小X
int tile_size_y; // Tile大小Y
int tile_size_z; // Tile大小Z
parallel_strategy_t strategy; // 并行策略
memory_layout_t layout; // 内存布局
} tile_config_t;
// 创建Tile配置
tile_config_t *create_tile_config(int tile_size_x, int tile_size_y, int tile_size_z);
// 并行策略
typedef enum {
PARALLEL_STRATEGY_DATA_PARALLEL, // 数据并行
PARALLEL_STRATEGY_MODEL_PARALLEL, // 模型并行
PARALLEL_STRATEGY_PIPELINE_PARALLEL // 流水线并行
} parallel_strategy_t;
2. C算子开发
C算子开发:
// 算子开发配置
typedef struct {
operator_type_t type; // 算子类型
input_config_t input; // 输入配置
output_config_t output; // 输出配置
optimization_level_t level; // 优化级别
} operator_dev_config_t;
// 创建算子开发配置
operator_dev_config_t *create_operator_dev_config(operator_type_t type);
3. 协同开发
协同开发:
// 协同开发配置
typedef struct {
tile_config_t *tile_config; // Tile配置
operator_dev_config_t *op_config; // 算子配置
bool enable_auto_tiling; // 启用自动Tile
bool enable_auto_optimization; // 启用自动优化
}协同开发配置_t;
// 创建协同开发配置
协同开发配置_t *create_协同开发配置(tile_config_t *tile_config, operator_dev_config_t *op_config);
协同优化
1. 自动Tile优化
# 自动Tile优化
def auto_tile_optimization(input_tensor, output_tensor):
# 阶段1:分析数据布局
print("Phase 1: Analyze Data Layout")
data_layout_analysis = analyze_data_layout(input_tensor)
print(f" Input shape: {input_tensor.shape}")
print(f" Input layout: {data_layout_analysis.layout}")
print(f" Memory alignment: {data_layout_analysis.alignment}")
# 阶段2:确定Tile策略
print("\nPhase 2: Determine Tiling Strategy")
tile_config = create_tile_config(
tile_size_x=64,
tile_size_y=64,
tile_size_z=64
)
# 选择并行策略
if input_tensor.shape[0] > 1024:
tile_config.strategy = PARALLEL_STRATEGY_DATA_PARALLEL
elif input_tensor.shape[1] > 1024:
tile_config.strategy = PARALLEL_STRATEGY_MODEL_PARALLEL
else:
tile_config.strategy = PARALLEL_STRATEGY_PIPELINE_PARALLEL
print(f" Tile size: ({tile_config.tile_size_x}, {tile_config.tile_size_y}, {tile_config.tile_size_z})")
print(f" Parallel strategy: {tile_config.strategy}")
# 阶段3:生成Tile代码
print("\nPhase 3: Generate Tiled Code")
tiled_code = generate_tiled_code(input_tensor, output_tensor, tile_config)
print(" Tiled code generated")
# 阶段4:优化Tile代码
print("\nPhase 4: Optimize Tiled Code")
optimized_code = optimize_tiled_code(tiled_code, tile_config)
print(" Tiled code optimized")
return optimized_code
2. C算子与Tile集成
// C算子与Tile集成
void integrate_operator_with_tile() {
// 阶段1:创建Tile配置
printf("Phase 1: Create Tile Configuration\n");
tile_config_t *tile_config = create_tile_config(64, 64, 64);
tile_config->strategy = PARALLEL_STRATEGY_DATA_PARALLEL;
tile_config->layout = MEMORY_LAYOUT_NHWC;
printf(" Tile configuration created\n");
// 阶段2:创建算子开发配置
printf("\nPhase 2: Create Operator Development Configuration\n");
operator_dev_config_t *op_config = create_operator_dev_config(OPERATOR_TYPE_CONV2D);
op_config->input.shape[0] = 1;
op_config->input.shape[1] = 3;
op_config->input.shape[2] = 224;
op_config->input.shape[3] = 224;
op_config->output.shape[0] = 1;
op_config->output.shape[1] = 64;
op_config->output.shape[2] = 224;
op_config->output.shape[3] = 224;
op_config->level = OPTIMIZATION_LEVEL_ADVANCED;
printf(" Operator development configuration created\n");
// 阶段3:生成Tile代码
printf("\nPhase 3: Generate Tiled Code\n");
char *tiled_code = generate_tiled_code_c(tile_config, op_config);
printf(" Tiled code generated\n");
// 阶段4:生成算子代码
printf("\nPhase 4: Generate Operator Code\n");
char *operator_code = generate_operator_code(op_config);
printf(" Operator code generated\n");
// 阶段5:集成代码
printf("\nPhase 5: Integrate Code\n");
char *integrated_code = integrate_code(tiled_code, operator_code);
printf(" Code integrated\n");
// 阶段6:编译和测试
printf("\nPhase 6: Compile and Test\n");
// 编译代码
bool compiled = compile_code(integrated_code);
if (compiled) {
printf(" Compilation: SUCCESS\n");
// 测试代码
bool tested = test_operator(integrated_code);
if (tested) {
printf(" Test: PASSED\n");
} else {
printf(" Test: FAILED\n");
}
} else {
printf(" Compilation: FAILED\n");
}
}
3. 性能优化
# 性能优化
def performance_optimization(input_tensor, output_tensor):
# 阶段1:基线性能测试
print("Phase 1: Baseline Performance Test")
baseline_time = measure_baseline_performance(input_tensor, output_tensor)
print(f" Baseline time: {baseline_time:.2f} ms")
# 阶段2:Tile优化
print("\nPhase 2: Tile Optimization")
tile_sizes = [(32, 32, 32), (64, 64, 64), (128, 128, 128)]
best_time = baseline_time
best_config = None
for tile_size in tile_sizes:
print(f"\n Testing tile size: {tile_size}")
# 创建Tile配置
tile_config = create_tile_config(*tile_size)
# 生成Tile代码
tiled_code = generate_tiled_code(input_tensor, output_tensor, tile_config)
# 编译和测试
compiled = compile_code(tiled_code)
if compiled:
time = measure_performance(tiled_code)
print(f" Performance: {time:.2f} ms")
if time < best_time:
best_time = time
best_config = tile_config
print(f" New best!")
# 阶段3:C算子优化
print("\nPhase 3: C Operator Optimization")
op_config = create_operator_dev_config(OPERATOR_TYPE_CONV2D)
optimization_levels = [
OPTIMIZATION_LEVEL_BASIC,
OPTIMIZATION_LEVEL_INTERMEDIATE,
OPTIMIZATION_LEVEL_ADVANCED
]
for level in optimization_levels:
print(f"\n Testing optimization level: {level}")
op_config.level = level
# 生成算子代码
operator_code = generate_operator_code(op_config)
# 编译和测试
compiled = compile_code(operator_code)
if compiled:
time = measure_performance(operator_code)
print(f" Performance: {time:.2f} ms")
if time < best_time:
best_time = time
print(f" New best!")
# 阶段4:综合优化
print("\nPhase 4: Comprehensive Optimization")
# 使用最佳Tile配置
tile_config = best_config if best_config else create_tile_config(64, 64, 64)
# 生成综合优化代码
optimized_code = generate_optimized_code(tile_config, op_config)
# 编译和测试
compiled = compile_code(optimized_code)
if compiled:
time = measure_performance(optimized_code)
speedup = baseline_time / time
print(f"\nFinal Results:")
print(f" Baseline: {baseline_time:.2f} ms")
print(f" Optimized: {time:.2f} ms")
print(f" Speedup: {speedup:.2f}x")
使用场景
场景一:卷积算子开发
# 卷积算子开发
def develop_convolution_operator():
# 阶段1:定义卷积算子
print("Phase 1: Define Convolution Operator")
op_config = create_operator_dev_config(OPERATOR_TYPE_CONV2D)
op_config.input.shape = [1, 3, 224, 224]
op_config.output.shape = [1, 64, 224, 224]
op_config.kernel_size = 3
op_config.stride = 1
op_config.padding = 1
print(f" Input shape: {op_config.input.shape}")
print(f" Output shape: {op_config.output.shape}")
print(f" Kernel size: {op_config.kernel_size}")
# 阶段2:Tile优化
print("\nPhase 2: Tile Optimization")
input_tensor = create_tensor(*op_config.input.shape)
output_tensor = create_tensor(*op_config.output.shape)
# 自动Tile优化
tiled_code = auto_tile_optimization(input_tensor, output_tensor)
# 阶段3:生成C算子代码
print("\nPhase 3: Generate C Operator Code")
operator_code = generate_operator_code(op_config)
# 阶段4:集成和优化
print("\nPhase 4: Integrate and Optimize")
integrated_code = integrate_code(tiled_code, operator_code)
optimized_code = optimize_code(integrated_code)
# 阶段5:编译和测试
print("\nPhase 5: Compile and Test")
compiled = compile_code(optimized_code)
if compiled:
tested = test_operator(optimized_code)
if tested:
print(" Convolution operator developed successfully!")
else:
print(" Convolution operator test failed!")
else:
print(" Convolution operator compilation failed!")
场景二:注意力算子开发
# 注意力算子开发
def develop_attention_operator():
# 阶段1:定义注意力算子
print("Phase 1: Define Attention Operator")
op_config = create_operator_dev_config(OPERATOR_TYPE_ATTENTION)
op_config.input.shape = [1, 512, 768]
op_config.output.shape = [1, 512, 768]
op_config.num_heads = 12
op_config.head_dim = 64
print(f" Input shape: {op_config.input.shape}")
print(f" Output shape: {op_config.output.shape}")
print(f" Num heads: {op_config.num_heads}")
print(f" Head dim: {op_config.head_dim}")
# 阶段2:Tile优化
print("\nPhase 2: Tile Optimization")
input_tensor = create_tensor(*op_config.input.shape)
output_tensor = create_tensor(*op_config.output.shape)
# 使用流水线并行策略
tile_config = create_tile_config(64, 64, 64)
tile_config.strategy = PARALLEL_STRATEGY_PIPELINE_PARALLEL
tiled_code = generate_tiled_code(input_tensor, output_tensor, tile_config)
# 阶段3:生成C算子代码
print("\nPhase 3: Generate C Operator Code")
operator_code = generate_operator_code(op_config)
# 阶段4:集成和优化
print("\nPhase 4: Integrate and Optimize")
integrated_code = integrate_code(tiled_code, operator_code)
optimized_code = optimize_code(integrated_code)
# 阶段5:编译和测试
print("\nPhase 5: Compile and Test")
compiled = compile_code(optimized_code)
if compiled:
tested = test_operator(optimized_code)
if tested:
print(" Attention operator developed successfully!")
else:
print(" Attention operator test failed!")
else:
print(" Attention operator compilation failed!")
场景三:矩阵乘法算子开发
// 矩阵乘法算子开发
void develop_matmul_operator() {
// 阶段1:定义矩阵乘法算子
printf("Phase 1: Define Matrix Multiplication Operator\n");
operator_dev_config_t *op_config = create_operator_dev_config(OPERATOR_TYPE_MATMUL);
op_config->input.shape[0] = 1024;
op_config->input.shape[1] = 1024;
op_config->output.shape[0] = 1024;
op_config->output.shape[1] = 1024;
printf(" Input shape: (%d, %d)\n", op_config->input.shape[0], op_config->input.shape[1]);
printf(" Output shape: (%d, %d)\n", op_config->output.shape[0], op_config->output.shape[1]);
// 阶段2:Tile优化
printf("\nPhase 2: Tile Optimization\n");
tile_config_t *tile_config = create_tile_config(128, 128, 128);
tile_config->strategy = PARALLEL_STRATEGY_DATA_PARALLEL;
tile_config->layout = MEMORY_LAYOUT_ROW_MAJOR;
char *tiled_code = generate_tiled_code_c(tile_config, op_config);
printf(" Tiled code generated\n");
// 阶段3:生成C算子代码
printf("\nPhase 3: Generate C Operator Code\n");
char *operator_code = generate_operator_code(op_config);
printf(" Operator code generated\n");
// 阶段4:集成和优化
printf("\nPhase 4: Integrate and Optimize\n");
char *integrated_code = integrate_code(tiled_code, operator_code);
char *optimized_code = optimize_code(integrated_code);
printf(" Code integrated and optimized\n");
// 阶段5:编译和测试
printf("\nPhase 5: Compile and Test\n");
bool compiled = compile_code(optimized_code);
if (compiled) {
printf(" Compilation: SUCCESS\n");
bool tested = test_operator(optimized_code);
if (tested) {
printf(" Test: PASSED\n");
printf(" Matrix multiplication operator developed successfully!\n");
} else {
printf(" Test: FAILED\n");
printf(" Matrix multiplication operator test failed!\n");
}
} else {
printf(" Compilation: FAILED\n");
printf(" Matrix multiplication operator compilation failed!\n");
}
}
性能优化
1. 内存优化
# 内存优化
def memory_optimization(tile_config, op_config):
# 启用内存池
enable_memory_pool()
# 优化内存布局
optimize_memory_layout(tile_config)
# 使用零拷贝
enable_zero_copy()
# 优化内存访问模式
optimize_memory_access_pattern(tile_config)
2. 计算优化
// 计算优化
void computation_optimization(tile_config_t *tile_config, operator_dev_config_t *op_config) {
// 启用SIMD指令
enable_simd_instructions();
// 优化循环展开
optimize_loop_unrolling(tile_config);
// 使用向量化
enable_vectorization(op_config);
// 优化指令流水线
optimize_instruction_pipeline();
}
3. 并行优化
# 并行优化
def parallel_optimization(tile_config):
# 启用多线程
enable_multithreading()
# 优化任务调度
optimize_task_scheduling(tile_config)
# 使用异步执行
enable_async_execution()
# 优化负载均衡
optimize_load_balancing(tile_config)
与其他组件的关系
| 组件 | 关系 |
|---|---|
| pypto | 并行Tile操作 |
| ascend-c | C算子开发 |
| runtime | 运行时支持 |
| ops-nn | 神经网络算子 |
关系:
NPU编程
↓
PyPTO(并行Tile操作)
↓
Ascend-C(C算子开发)
↓
Runtime(运行时)
↓
NPU硬件
调试技巧
1. Tile调试
# Tile调试
def debug_tiling(input_tensor, output_tensor, tile_config):
# 启用调试模式
enable_debug_mode()
# 设置断点
set_breakpoint("tile_compute", 100)
# 单步执行
step_through_tiling()
# 查看Tile数据
inspect_tile_data()
# 验证Tile结果
validate_tile_results()
2. 算子调试
// 算子调试
void debug_operator(operator_dev_config_t *op_config) {
// 启用调试模式
enable_debug_mode();
// 设置断点
set_breakpoint("operator_compute", 100);
// 单步执行
step_through_operator();
// 查看变量
inspect_variables();
// 验证结果
validate_results();
}
3. 性能分析
# 性能分析
def analyze_performance(tile_config, op_config):
# 启用性能分析
enable_profiling()
# 运行算子
run_operator(tile_config, op_config)
# 获取性能分析结果
profile = get_performance_profile()
print("Performance Profile:")
print(f" Total time: {profile.total_time:.2f} ms")
print(f" Compute time: {profile.compute_time:.2f} ms")
print(f" Memory transfer time: {profile.memory_transfer_time:.2f} ms")
print(f" Tile overhead: {profile.tile_overhead:.2f} ms")
常见问题
问题1:Tile效果不佳
# 错误:Tile大小不当
tile_config = create_tile_config(1024, 1024, 1024) # 太大!
# 正确:使用合理的Tile大小
tile_config = create_tile_config(64, 64, 64) # 合理
问题2:编译失败
// 错误:代码生成错误
char *code = generate_operator_code(op_config); // 可能错误!
// 正确:检查代码生成
if (validate_operator_config(op_config)) {
char *code = generate_operator_code(op_config); // 安全
}
问题3:性能不佳
# 错误:未使用优化
run_operator(tile_config, op_config) # 未优化!
# 正确:使用优化
optimize_code(code)
run_operator(tile_config, op_config) # 优化后,快!
应用场景总结
场景一:卷积算子开发
用于卷积算子开发。
场景二:注意力算子开发
用于注意力算子开发。
场景三:矩阵乘法算子开发
用于矩阵乘法算子开发。
场景四:自定义算子开发
用于自定义算子开发。
总结
PyPTO与Ascend-C的组合:
- 并行Tile操作
- C算子开发
- 自动优化
- 性能提升
- 开发效率
通过并行Tile操作和C算子开发的协同,实现了高效的NPU编程,是算子开发的重要工具。
相关链接
pypto仓库地址:https://atomgit.com/cann/pypto
ascend-c仓库地址:https://atomgit.com/cann/ascend-c
CANN组织地址:https://atomgit.com/cann
runtime仓库地址:https://atomgit.com/cann/runtime
昇腾计算产业是基于昇腾系列(HUAWEI Ascend)处理器和基础软件构建的全栈 AI计算基础设施、行业应用及服务,https://devpress.csdn.net/organization/setting/general/146749包括昇腾系列处理器、系列硬件、CANN、AI计算框架、应用使能、开发工具链、管理运维工具、行业应用及服务等全产业链
更多推荐



所有评论(0)