CANN 组合库深度解析:Runtime与Ops-Samples的运行时与算子样例集成
本文基于CANN开源社区的runtime和ops-samples仓库进行技术解读
CANN组织地址:https://atomgit.com/cann
runtime仓库地址:https://atomgit.com/cann/runtime
ops-samples仓库地址:https://atomgit.com/cann/ops-samples
前言
运行时环境和算子样例是开发和学习的重要资源。Runtime(运行时)与Ops-Samples(算子样例)如何协同工作?如何实现高效的运行时环境与算子样例集成?
本文探讨Runtime与Ops-Samples的协同机制,以及如何通过两者的配合为开发者提供便捷的开发和学习体验。
什么是组合运行时样例集成
Runtime与Ops-Samples的组合:
没有协同:
运行时和样例各自独立 → 学习困难 → 开发效率低
有协同:
运行时和样例协同 → 学习容易 → 开发效率高
架构:
开发者
↓
Ops-Samples(算子样例)
↓
Runtime(运行时)
↓
NPU硬件
核心概念
1. 运行时环境
运行时环境:
#include "runtime/runtime.h"
#include "ops_samples/ops_samples.h"
// 运行时配置
typedef struct {
device_id_t device_id; // 设备ID
stream_config_t stream_config; // 流配置
memory_config_t memory_config; // 内存配置
performance_config_t perf_config; // 性能配置
} runtime_config_t;
// 创建运行时
runtime_handle_t *create_runtime(runtime_config_t *config);
2. 算子样例
算子样例:
// 算子样例类型
typedef enum {
SAMPLE_TYPE_BASIC, // 基础样例
SAMPLE_TYPE_ADVANCED, // 高级样例
SAMPLE_TYPE_PERFORMANCE, // 性能样例
SAMPLE_TYPE_OPTIMIZATION // 优化样例
} sample_type_t;
// 创建算子样例
sample_t *create_sample(sample_type_t type, operator_t *op);
3. 样例框架
样例框架:
// 样例框架配置
typedef struct {
bool enable_profiling; // 启用性能分析
bool enable_logging; // 启用日志
bool enable_validation; // 启用验证
bool enable_benchmarking; // 启用基准测试
} sample_framework_config_t;
// 创建样例框架
sample_framework_t *create_sample_framework(sample_framework_config_t *config);
协同机制
1. 基础算子样例
// 基础算子样例
void basic_operator_sample() {
// 阶段1:创建运行时
printf("Phase 1: Create Runtime\n");
runtime_config_t runtime_config;
runtime_config.device_id = 0;
runtime_config.stream_config.num_streams = 1;
runtime_config.memory_config.enable_memory_pool = true;
runtime_config.perf_config.enable_profiling = false;
runtime_handle_t *runtime = create_runtime(&runtime_config);
printf(" Runtime created\n");
// 阶段2:创建算子样例
printf("\nPhase 2: Create Operator Sample\n");
// 创建卷积算子
operator_config_t conv_config;
conv_config.input_channels = 3;
conv_config.output_channels = 64;
conv_config.kernel_size = 3;
conv_config.stride = 1;
conv_config.padding = 1;
operator_t *conv_op = create_convolution_operator(&conv_config);
// 创建基础样例
sample_t *sample = create_sample(SAMPLE_TYPE_BASIC, conv_op);
printf(" Operator sample created\n");
// 阶段3:执行样例
printf("\nPhase 3: Execute Sample\n");
// 准备输入数据
int batch_size = 1;
int height = 224;
int width = 224;
size_t input_size = batch_size * conv_config.input_channels * height * width * sizeof(float);
float *input = malloc(input_size);
for (int i = 0; i < input_size / sizeof(float); i++) {
input[i] = (float)i / input_size;
}
// 准备输出数据
size_t output_size = batch_size * conv_config.output_channels * height * width * sizeof(float);
float *output = malloc(output_size);
// 执行算子
execute_sample(runtime, sample, input, output);
printf(" Sample executed\n");
// 阶段4:验证结果
printf("\nPhase 4: Validate Result\n");
bool is_valid = validate_output(output, output_size);
if (is_valid) {
printf(" Result validation: PASSED\n");
} else {
printf(" Result validation: FAILED\n");
}
// 清理资源
free(input);
free(output);
destroy_sample(sample);
destroy_operator(conv_op);
destroy_runtime(runtime);
}
2. 性能样例
// 性能样例
void performance_sample() {
// 阶段1:创建运行时
printf("Phase 1: Create Runtime\n");
runtime_config_t runtime_config;
runtime_config.device_id = 0;
runtime_config.stream_config.num_streams = 4;
runtime_config.memory_config.enable_memory_pool = true;
runtime_config.perf_config.enable_profiling = true;
runtime_handle_t *runtime = create_runtime(&runtime_config);
printf(" Runtime created\n");
// 阶段2:创建性能样例
printf("\nPhase 2: Create Performance Sample\n");
// 创建矩阵乘法算子
operator_config_t matmul_config;
matmul_config.m = 1024;
matmul_config.n = 1024;
matmul_config.k = 1024;
operator_t *matmul_op = create_matmul_operator(&matmul_config);
// 创建性能样例
sample_t *sample = create_sample(SAMPLE_TYPE_PERFORMANCE, matmul_op);
printf(" Performance sample created\n");
// 阶段3:执行性能测试
printf("\nPhase 3: Execute Performance Test\n");
// 准备输入数据
size_t a_size = matmul_config.m * matmul_config.k * sizeof(float);
size_t b_size = matmul_config.k * matmul_config.n * sizeof(float);
size_t c_size = matmul_config.m * matmul_config.n * sizeof(float);
float *a = malloc(a_size);
float *b = malloc(b_size);
float *c = malloc(c_size);
// 初始化数据
initialize_random(a, a_size / sizeof(float));
initialize_random(b, b_size / sizeof(float));
// 预热
for (int i = 0; i < 10; i++) {
execute_sample(runtime, sample, a, b, c);
}
// 性能测试
int num_iterations = 100;
double start = get_time();
for (int i = 0; i < num_iterations; i++) {
execute_sample(runtime, sample, a, b, c);
}
double end = get_time();
// 计算性能指标
double avg_time = (end - start) / num_iterations;
double throughput = 2.0 * matmul_config.m * matmul_config.n * matmul_config.k / avg_time;
double gflops = throughput / 1e9;
printf(" Performance Test Results:\n");
printf(" Average time: %.2f ms\n", avg_time * 1000);
printf(" Throughput: %.2f GFLOPS\n", gflops);
// 获取性能分析结果
performance_profile_t *profile = get_performance_profile(runtime);
printf(" Performance Profile:\n");
printf(" Compute time: %.2f ms\n", profile->compute_time * 1000);
printf(" Memory transfer time: %.2f ms\n", profile->memory_transfer_time * 1000);
printf(" Kernel launch time: %.2f ms\n", profile->kernel_launch_time * 1000);
// 清理资源
free(a);
free(b);
free(c);
destroy_sample(sample);
destroy_operator(matmul_op);
destroy_runtime(runtime);
}
3. 优化样例
// 优化样例
void optimization_sample() {
// 阶段1:创建运行时
printf("Phase 1: Create Runtime\n");
runtime_config_t runtime_config;
runtime_config.device_id = 0;
runtime_config.stream_config.num_streams = 1;
runtime_config.memory_config.enable_memory_pool = true;
runtime_config.perf_config.enable_profiling = true;
runtime_handle_t *runtime = create_runtime(&runtime_config);
printf(" Runtime created\n");
// 阶段2:创建优化样例
printf("\nPhase 2: Create Optimization Sample\n");
// 创建卷积算子
operator_config_t conv_config;
conv_config.input_channels = 3;
conv_config.output_channels = 64;
conv_config.kernel_size = 3;
conv_config.stride = 1;
conv_config.padding = 1;
operator_t *conv_op = create_convolution_operator(&conv_config);
// 创建优化样例
sample_t *sample = create_sample(SAMPLE_TYPE_OPTIMIZATION, conv_op);
printf(" Optimization sample created\n");
// 阶段3:测试不同优化策略
printf("\nPhase 3: Test Optimization Strategies\n");
// 准备输入数据
int batch_size = 1;
int height = 224;
int width = 224;
size_t input_size = batch_size * conv_config.input_channels * height * width * sizeof(float);
size_t output_size = batch_size * conv_config.output_channels * height * width * sizeof(float);
float *input = malloc(input_size);
float *output = malloc(output_size);
initialize_random(input, input_size / sizeof(float));
// 测试不同优化策略
optimization_strategy_t strategies[] = {
{"No Optimization", OPTIMIZATION_NONE},
{"Basic Optimization", OPTIMIZATION_BASIC},
{"Advanced Optimization", OPTIMIZATION_ADVANCED},
{"Aggressive Optimization", OPTIMIZATION_AGGRESSIVE}
};
for (int i = 0; i < 4; i++) {
printf("\n Testing: %s\n", strategies[i].name);
// 应用优化策略
apply_optimization_strategy(sample, strategies[i].strategy);
// 性能测试
int num_iterations = 100;
double start = get_time();
for (int j = 0; j < num_iterations; j++) {
execute_sample(runtime, sample, input, output);
}
double end = get_time();
double avg_time = (end - start) / num_iterations;
printf(" Average time: %.2f ms\n", avg_time * 1000);
// 验证结果
bool is_valid = validate_output(output, output_size);
if (is_valid) {
printf(" Validation: PASSED\n");
} else {
printf(" Validation: FAILED\n");
}
}
// 清理资源
free(input);
free(output);
destroy_sample(sample);
destroy_operator(conv_op);
destroy_runtime(runtime);
}
使用场景
场景一:学习算子开发
// 学习算子开发
void learn_operator_development() {
// 阶段1:创建学习环境
printf("Phase 1: Create Learning Environment\n");
runtime_config_t runtime_config;
runtime_config.device_id = 0;
runtime_config.stream_config.num_streams = 1;
runtime_config.memory_config.enable_memory_pool = true;
runtime_config.perf_config.enable_logging = true;
runtime_handle_t *runtime = create_runtime(&runtime_config);
printf(" Learning environment created\n");
// 阶段2:加载教学样例
printf("\nPhase 2: Load Tutorial Samples\n");
// 加载基础样例
sample_t *basic_samples[] = {
load_sample("conv2d_basic"),
load_sample("pooling_basic"),
load_sample("activation_basic")
};
// 加载高级样例
sample_t *advanced_samples[] = {
load_sample("conv2d_advanced"),
load_sample("attention_advanced"),
load_sample("normalization_advanced")
};
printf(" Tutorial samples loaded\n");
// 阶段3:逐步学习
printf("\nPhase 3: Step-by-Step Learning\n");
// 学习基础算子
for (int i = 0; i < 3; i++) {
printf("\n Learning: %s\n", basic_samples[i]->name);
// 查看样例代码
print_sample_code(basic_samples[i]);
// 运行样例
run_sample(runtime, basic_samples[i]);
// 查看结果
view_sample_result(basic_samples[i]);
}
// 学习高级算子
for (int i = 0; i < 3; i++) {
printf("\n Learning: %s\n", advanced_samples[i]->name);
// 查看样例代码
print_sample_code(advanced_samples[i]);
// 运行样例
run_sample(runtime, advanced_samples[i]);
// 查看结果
view_sample_result(advanced_samples[i]);
}
printf("\nLearning completed\n");
// 清理资源
for (int i = 0; i < 3; i++) {
destroy_sample(basic_samples[i]);
destroy_sample(advanced_samples[i]);
}
destroy_runtime(runtime);
}
场景二:性能调优
// 性能调优
void performance_tuning() {
// 阶段1:创建性能分析环境
printf("Phase 1: Create Performance Analysis Environment\n");
runtime_config_t runtime_config;
runtime_config.device_id = 0;
runtime_config.stream_config.num_streams = 4;
runtime_config.memory_config.enable_memory_pool = true;
runtime_config.perf_config.enable_profiling = true;
runtime_handle_t *runtime = create_runtime(&runtime_config);
printf(" Performance analysis environment created\n");
// 阶段2:加载性能样例
printf("\nPhase 2: Load Performance Samples\n");
sample_t *perf_samples[] = {
load_sample("conv2d_perf"),
load_sample("matmul_perf"),
load_sample("attention_perf")
};
printf(" Performance samples loaded\n");
// 阶段3:性能分析
printf("\nPhase 3: Performance Analysis\n");
for (int i = 0; i < 3; i++) {
printf("\n Analyzing: %s\n", perf_samples[i]->name);
// 运行性能测试
run_performance_test(runtime, perf_samples[i]);
// 获取性能分析结果
performance_profile_t *profile = get_performance_profile(runtime);
printf(" Performance Breakdown:\n");
printf(" Compute: %.2f ms (%.2f%%)\n",
profile->compute_time * 1000,
profile->compute_time / profile->total_time * 100);
printf(" Memory Transfer: %.2f ms (%.2f%%)\n",
profile->memory_transfer_time * 1000,
profile->memory_transfer_time / profile->total_time * 100);
printf(" Kernel Launch: %.2f ms (%.2f%%)\n",
profile->kernel_launch_time * 1000,
profile->kernel_launch_time / profile->total_time * 100);
// 提供优化建议
optimization_suggestion_t *suggestions = get_optimization_suggestions(profile);
printf(" Optimization Suggestions:\n");
for (int j = 0; j < suggestions->count; j++) {
printf(" %d. %s\n", j + 1, suggestions->suggestions[j]);
}
}
printf("\nPerformance analysis completed\n");
// 清理资源
for (int i = 0; i < 3; i++) {
destroy_sample(perf_samples[i]);
}
destroy_runtime(runtime);
}
场景三:自定义算子开发
// 自定义算子开发
void custom_operator_development() {
// 阶段1:创建开发环境
printf("Phase 1: Create Development Environment\n");
runtime_config_t runtime_config;
runtime_config.device_id = 0;
runtime_config.stream_config.num_streams = 1;
runtime_config.memory_config.enable_memory_pool = true;
runtime_config.perf_config.enable_profiling = true;
runtime_config.perf_config.enable_logging = true;
runtime_handle_t *runtime = create_runtime(&runtime_config);
printf(" Development environment created\n");
// 阶段2:参考现有样例
printf("\nPhase 2: Reference Existing Samples\n");
// 加载参考样例
sample_t *reference_sample = load_sample("conv2d_reference");
printf(" Reference sample loaded\n");
// 阶段3:开发自定义算子
printf("\nPhase 3: Develop Custom Operator\n");
// 定义自定义算子
operator_config_t custom_config;
custom_config.name = "custom_conv2d";
custom_config.input_channels = 3;
custom_config.output_channels = 64;
custom_config.kernel_size = 3;
custom_config.stride = 1;
custom_config.padding = 1;
operator_t *custom_op = create_custom_operator(&custom_config);
printf(" Custom operator created\n");
// 阶段4:测试自定义算子
printf("\nPhase 4: Test Custom Operator\n");
// 创建测试样例
sample_t *test_sample = create_sample(SAMPLE_TYPE_BASIC, custom_op);
// 准备测试数据
int batch_size = 1;
int height = 224;
int width = 224;
size_t input_size = batch_size * custom_config.input_channels * height * width * sizeof(float);
size_t output_size = batch_size * custom_config.output_channels * height * width * sizeof(float);
float *input = malloc(input_size);
float *output = malloc(output_size);
initialize_random(input, input_size / sizeof(float));
// 运行测试
run_sample(runtime, test_sample);
// 验证结果
bool is_valid = validate_output(output, output_size);
if (is_valid) {
printf(" Custom operator test: PASSED\n");
} else {
printf(" Custom operator test: FAILED\n");
}
// 性能对比
printf("\n Performance Comparison:\n");
double ref_time = measure_performance(runtime, reference_sample);
double custom_time = measure_performance(runtime, test_sample);
printf(" Reference: %.2f ms\n", ref_time * 1000);
printf(" Custom: %.2f ms\n", custom_time * 1000);
printf(" Speedup: %.2fx\n", ref_time / custom_time);
// 清理资源
free(input);
free(output);
destroy_sample(test_sample);
destroy_sample(reference_sample);
destroy_operator(custom_op);
destroy_runtime(runtime);
}
性能优化
1. 内存优化
// 内存优化
void optimize_memory_usage(runtime_handle_t *runtime, sample_t *sample) {
// 启用内存池
enable_memory_pool(runtime);
// 优化内存分配
optimize_memory_allocation(runtime);
// 使用零拷贝
enable_zero_copy(runtime);
}
2. 流优化
// 流优化
void optimize_streams(runtime_handle_t *runtime, sample_t *sample) {
// 启用多流
enable_multiple_streams(runtime, 4);
// 流水线执行
enable_pipeline_execution(runtime);
// 异步执行
enable_async_execution(runtime);
}
3. 算子优化
// 算子优化
void optimize_operator(sample_t *sample) {
// 算子融合
enable_operator_fusion(sample);
// 算子替换
enable_operator_replacement(sample);
// 算子调优
enable_operator_tuning(sample);
}
与其他组件的关系
| 组件 | 关系 |
|---|---|
| runtime | 运行时环境 |
| ops-samples | 算子样例 |
| ops-nn | 神经网络算子 |
| ops-cv | 计算机视觉算子 |
关系:
开发者
↓
Ops-Samples(算子样例)
↓
Runtime(运行时)
↓
NPU硬件
调试技巧
1. 样例调试
// 样例调试
void debug_sample(runtime_handle_t *runtime, sample_t *sample) {
// 启用调试模式
enable_debug_mode(runtime);
// 设置断点
set_breakpoint(runtime, sample, 100);
// 单步执行
step_through_sample(runtime, sample);
// 查看变量
inspect_variables(runtime, sample);
}
2. 性能分析
// 性能分析
void analyze_performance(runtime_handle_t *runtime, sample_t *sample) {
// 启用性能分析
enable_profiling(runtime);
// 运行样例
run_sample(runtime, sample);
// 获取性能分析结果
performance_profile_t *profile = get_performance_profile(runtime);
printf("Performance Profile:\n");
printf(" Total time: %.2f ms\n", profile->total_time * 1000);
printf(" Compute time: %.2f ms\n", profile->compute_time * 1000);
printf(" Memory transfer time: %.2f ms\n", profile->memory_transfer_time * 1000);
}
3. 错误诊断
// 错误诊断
void diagnose_errors(runtime_handle_t *runtime, sample_t *sample) {
// 运行样例
error_code_t error = run_sample(runtime, sample);
if (error != ERROR_SUCCESS) {
// 获取错误信息
error_info_t *info = get_error_info(error);
printf("Error: %s\n", info->message);
printf(" Code: %d\n", info->code);
printf(" File: %s\n", info->file);
printf(" Line: %d\n", info->line);
// 提供修复建议
fix_suggestion_t *suggestions = get_fix_suggestions(error);
printf("Fix Suggestions:\n");
for (int i = 0; i < suggestions->count; i++) {
printf(" %d. %s\n", i + 1, suggestions->suggestions[i]);
}
}
}
常见问题
问题1:样例运行失败
// 错误:运行时未初始化
run_sample(runtime, sample); // 运行时未初始化!
// 正确:先初始化运行时
runtime = create_runtime(&config);
run_sample(runtime, sample); // 成功
问题2:性能不佳
// 错误:未使用优化
run_sample(runtime, sample); // 未优化!
// 正确:使用优化
apply_optimization_strategy(sample, OPTIMIZATION_ADVANCED);
run_sample(runtime, sample); // 优化后,快!
问题3:内存不足
// 错误:数据太大
prepare_large_data(); // 太大,内存不足!
// 正确:使用合理的数据大小
prepare_reasonable_data(); // 合理
应用场景总结
场景一:学习算子开发
用于学习算子开发。
场景二:性能调优
用于性能调优。
场景三:自定义算子开发
用于自定义算子开发。
场景四:算法验证
用于算法验证。
总结
Runtime与Ops-Samples的组合:
- 运行时环境
- 算子样例
- 学习资源
- 性能分析
- 开发支持
通过运行时环境和算子样例的协同,为开发者提供了便捷的开发和学习体验,是CANN生态的重要组成部分。
相关链接
runtime仓库地址:https://atomgit.com/cann/runtime
ops-samples仓库地址:https://atomgit.com/cann/ops-samples
CANN组织地址:https://atomgit.com/cann
ops-nn仓库地址:https://atomgit.com/cann/ops-nn
ops-cv仓库地址:https://atomgit.com/cann/ops-cv
昇腾计算产业是基于昇腾系列(HUAWEI Ascend)处理器和基础软件构建的全栈 AI计算基础设施、行业应用及服务,https://devpress.csdn.net/organization/setting/general/146749包括昇腾系列处理器、系列硬件、CANN、AI计算框架、应用使能、开发工具链、管理运维工具、行业应用及服务等全产业链
更多推荐



所有评论(0)