1.【高性能计算】CANN并行张量计算新范式:pypto编程框架深度解析

一、项目简介

pypto(PyPTO,发音: pai p-t-o)是CANN推出的Parallel Tensor/Tile Operation(并行张量/分块操作)编程范式。作为一种创新的编程模型,pypto旨在简化NPU上的高性能并行计算开发,为开发者提供一种更直观、更高效的张量计算编程方式。

随着深度学习模型规模的不断增长,传统的逐元素计算方式已经无法满足性能需求。pypto通过引入分块(Tile)操作和并行计算的概念,让开发者能够以更自然的方式表达张量计算,同时充分发挥NPU硬件的并行计算能力。这种编程范式特别适合于矩阵运算、卷积操作等需要大量并行计算的场景。

相关链接:

  • CANN组织链接:https://atomgit.com/cann
  • pypto仓库链接:https://atomgit.com/cann/pypto

二、核心功能与特性

2.1 PyPTO编程范式特点

特性 描述 优势
分块操作 将大张量自动分块处理 适应有限的Local Memory
并行计算 多核并行执行分块任务 充分利用AI Core资源
抽象层次高 隐藏底层硬件细节 降低编程复杂度
类型推导 自动推导张量形状和类型 减少样板代码
性能优化 内置性能优化策略 开箱即用的高性能

2.2 核心概念

  1. Tile(分块):将大张量切分为适合Local Memory的小块
  2. Parallel(并行):在多个AI Core上并行执行计算
  3. Operation(操作):定义在Tile上的计算操作
  4. Reduction(归约):跨Tile的数据聚合操作

三、环境准备

3.1 系统要求

  • 操作系统:Ubuntu 20.04/22.04
  • 处理器:Atlas 300T/800T系列
  • CANN版本:CANN 8.0.RC3及以上
  • Python版本:3.8-3.10
  • 编译器:GCC 9.0+ / Clang 12.0+

3.2 安装步骤

# 克隆pypto仓库
git clone https://atomgit.com/cann/pypto.git
cd pypto

# 安装Python依赖
pip install -r requirements.txt

# 编译安装
mkdir build && cd build
cmake .. \
    -DCMAKE_BUILD_TYPE=Release \
    -DCANN_INSTALL_PATH=/usr/local/Ascend \
    -DBUILD_PYTHON_BINDINGS=ON
make -j$(nproc)
make install

# 验证安装
python3 -c "import pypto; print('pypto installed successfully')"

四、基础编程示例

4.1 简单的矩阵加法

import pypto as pt
import numpy as np

# 定义张量形状
M, N = 1024, 1024

# 创建输入张量
a = pt.Tensor((M, N), dtype=pt.float32)
b = pt.Tensor((M, N), dtype=pt.float32)
c = pt.Tensor((M, N), dtype=pt.float32)

# 填充数据
a_data = np.random.rand(M, N).astype(np.float32)
b_data = np.random.rand(M, N).astype(np.float32)

a.from_numpy(a_data)
b.from_numpy(b_data)

# 定义分块大小
tile_size = (64, 64)

# 使用pypto进行并行加法
@pt.pto_kernel
def matrix_add(a: pt.Tile, b: pt.Tile, c: pt.Tile):
    """
    矩阵加法核函数
    Args:
        a: 输入Tile A
        b: 输入Tile B
        c: 输出Tile C
    """
    # 遍历Tile中的每个元素
    for i in pt.range(a.shape[0]):
        for j in pt.range(a.shape[1]):
            c[i, j] = a[i, j] + b[i, j]

# 执行并行计算
pt.execute(matrix_add, a, b, c,
          tile_size=tile_size,
          parallel=True)

# 获取结果
result = c.to_numpy()
print("Addition completed. Result shape:", result.shape)

4.2 矩阵乘法

import pypto as pt
import numpy as np

# 定义矩阵维度
M, K, N = 512, 512, 512

# 创建输入张量
A = pt.Tensor((M, K), dtype=pt.float32)
B = pt.Tensor((K, N), dtype=pt.float32)
C = pt.Tensor((M, N), dtype=pt.float32)

# 填充数据
A_data = np.random.rand(M, K).astype(np.float32)
B_data = np.random.rand(K, N).astype(np.float32)

A.from_numpy(A_data)
B.from_numpy(B_data)

# 定义分块矩阵乘法
@pt.pto_kernel
def matmul_tile(A_tile: pt.Tile, B_tile: pt.Tile,
                C_tile: pt.Tile, K_inner: int):
    """
    分块矩阵乘法
    C_tile = A_tile x B_tile
    """
    # 定义累加器
    acc = pt.zeros((A_tile.shape[0], B_tile.shape[1]), dtype=pt.float32)

    # K维循环
    for k in pt.range(K_inner):
        # 计算部分积
        for i in pt.range(A_tile.shape[0]):
            for j in pt.range(B_tile.shape[1]):
                acc[i, j] += A_tile[i, k] * B_tile[k, j]

    # 写回结果
    for i in pt.range(C_tile.shape[0]):
        for j in pt.range(C_tile.shape[1]):
            C_tile[i, j] = acc[i, j]

# 设置分块参数
tile_m, tile_k, tile_n = 64, 64, 64
K_blocks = (K + tile_k - 1) // tile_k

# 执行分块矩阵乘法
for kb in range(K_blocks):
    k_start = kb * tile_k
    k_end = min(k_start + tile_k, K)
    k_size = k_end - k_start

    # 提取K维分块
    A_block = A[:, k_start:k_end]
    B_block = B[k_start:k_end, :]

    # 执行计算
    pt.execute(matmul_tile, A_block, B_block, C,
              tile_size=(tile_m, tile_n),
              kwargs={'K_inner': k_size},
              accumulate=(kb > 0))  # 第一次不清零,后续累加

result = C.to_numpy()

# 验证结果
expected = np.dot(A_data, B_data)
print("Matrix multiplication error:", np.max(np.abs(result - expected)))

4.3 卷积操作

import pypto as pt
import numpy as np

# 定义卷积参数
batch_size = 8
in_channels = 64
out_channels = 128
height, width = 32, 32
kernel_size = 3
padding = 1
stride = 1

# 创建输入和权重张量
input_tensor = pt.Tensor((batch_size, in_channels, height, width), dtype=pt.float32)
weight = pt.Tensor((out_channels, in_channels, kernel_size, kernel_size), dtype=pt.float32)
output = pt.Tensor((batch_size, out_channels, height, width), dtype=pt.float32)

# 填充随机数据
input_data = np.random.randn(batch_size, in_channels, height, width).astype(np.float32)
weight_data = np.random.randn(out_channels, in_channels, kernel_size, kernel_size).astype(np.float32) * 0.1

input_tensor.from_numpy(input_data)
weight.from_numpy(weight_data)

# 定义2D卷积核函数
@pt.pto_kernel
def conv2d_tile(input_tile: pt.Tile, weight_tile: pt.Tile,
                output_tile: pt.Tile, params: dict):
    """
    2D卷积操作
    """
    batch, in_ch, h, w = input_tile.shape
    out_ch = weight_tile.shape[0]
    kernel_size = weight_tile.shape[2]

    # 对每个输出通道
    for oc in pt.range(out_ch):
        # 对每个batch
        for b in pt.range(batch):
            # 对每个输出位置
            for oh in pt.range(h):
                for ow in pt.range(w):
                    acc = 0.0
                    # 对每个输入通道
                    for ic in pt.range(in_ch):
                        # 对每个kernel位置
                        for kh in pt.range(kernel_size):
                            for kw in pt.range(kernel_size):
                                ih = oh + kh - params['padding']
                                iw = ow + kw - params['padding']

                                # 边界检查
                                if 0 <= ih < h and 0 <= iw < w:
                                    acc += input_tile[b, ic, ih, iw] * weight_tile[oc, ic, kh, kw]

                    output_tile[b, oc, oh, ow] = acc

# 设置卷积参数
conv_params = {
    'kernel_size': kernel_size,
    'padding': padding,
    'stride': stride
}

# 设置分块大小
tile_batch = 2
tile_out_ch = 32
tile_h = 16
tile_w = 16

# 执行卷积
pt.execute(conv2d_tile, input_tensor, weight, output,
          tile_size=(tile_batch, tile_out_ch, tile_h, tile_w),
          kwargs={'params': conv_params},
          parallel=True)

result = output.to_numpy()
print("Convolution output shape:", result.shape)

五、高级特性示例

5.1 Reduce操作(归约)

import pypto as pt
import numpy as np

# 创建输入张量
input_tensor = pt.Tensor((1024, 1024), dtype=pt.float32)
sum_result = pt.Tensor((1,), dtype=pt.float32)
max_result = pt.Tensor((1,), dtype=pt.float32)

input_data = np.random.rand(1024, 1024).astype(np.float32)
input_tensor.from_numpy(input_data)

# 定义归约核函数
@pt.pto_kernel
def reduce_ops(input_tile: pt.Tile, sum_tile: pt.Tile,
               max_tile: pt.Tile, op_type: str):
    """
    归约操作:求和或求最大值
    """
    if op_type == 'sum':
        acc = 0.0
        for i in pt.range(input_tile.shape[0]):
            for j in pt.range(input_tile.shape[1]):
                acc += input_tile[i, j]
        sum_tile[0] = acc

    elif op_type == 'max':
        acc = -float('inf')
        for i in pt.range(input_tile.shape[0]):
            for j in pt.range(input_tile.shape[1]):
                val = input_tile[i, j]
                if val > acc:
                    acc = val
        max_tile[0] = acc

# 执行求和归约
pt.execute(reduce_ops, input_tensor, sum_result, max_result,
          tile_size=(256, 256),
          kwargs={'op_type': 'sum'},
          reduce_op='sum')

# 执行求最大值归约
pt.execute(reduce_ops, input_tensor, sum_result, max_result,
          tile_size=(256, 256),
          kwargs={'op_type': 'max'},
          reduce_op='max')

sum_val = sum_result.to_numpy()[0]
max_val = max_result.to_numpy()[0]

print(f"Sum: {sum_val}, Max: {max_val}")
print(f"Expected Sum: {np.sum(input_data)}, Expected Max: {np.max(input_data)}")

5.2 逐元素操作

import pypto as pt
import numpy as np

# 创建输入张量
input_tensor = pt.Tensor((512, 512), dtype=pt.float32)
relu_output = pt.Tensor((512, 512), dtype=pt.float32)
sigmoid_output = pt.Tensor((512, 512), dtype=pt.float32)

input_data = np.random.randn(512, 512).astype(np.float32)
input_tensor.from_numpy(input_data)

# 定义ReLU激活函数
@pt.pto_kernel
def relu_kernel(input_tile: pt.Tile, output_tile: pt.Tile):
    """ReLU激活函数:max(0, x)"""
    for i in pt.range(input_tile.shape[0]):
        for j in pt.range(input_tile.shape[1]):
            val = input_tile[i, j]
            output_tile[i, j] = pt.max(0.0, val)

# 定义Sigmoid激活函数
@pt.pto_kernel
def sigmoid_kernel(input_tile: pt.Tile, output_tile: pt.Tile):
    """Sigmoid激活函数:1 / (1 + exp(-x))"""
    for i in pt.range(input_tile.shape[0]):
        for j in pt.range(input_tile.shape[1]):
            val = input_tile[i, j]
            output_tile[i, j] = 1.0 / (1.0 + pt.exp(-val))

# 执行ReLU
pt.execute(relu_kernel, input_tensor, relu_output,
          tile_size=(128, 128), parallel=True)

# 执行Sigmoid
pt.execute(sigmoid_kernel, input_tensor, sigmoid_output,
          tile_size=(128, 128), parallel=True)

relu_result = relu_output.to_numpy()
sigmoid_result = sigmoid_output.to_numpy()

print("ReLU completed, min:", relu_result.min(), "max:", relu_result.max())
print("Sigmoid completed, min:", sigmoid_result.min(), "max:", sigmoid_result.max())

5.3 转置操作

import pypto as pt
import numpy as np

# 创建输入张量
input_tensor = pt.Tensor((256, 512), dtype=pt.float32)
output_tensor = pt.Tensor((512, 256), dtype=pt.float32)

input_data = np.random.rand(256, 512).astype(np.float32)
input_tensor.from_numpy(input_data)

# 定义转置核函数
@pt.pto_kernel
def transpose_kernel(input_tile: pt.Tile, output_tile: pt.Tile):
    """
    矩阵转置
    """
    in_rows, in_cols = input_tile.shape

    for i in pt.range(in_rows):
        for j in pt.range(in_cols):
            output_tile[j, i] = input_tile[i, j]

# 执行转置
pt.execute(transpose_kernel, input_tensor, output_tensor,
          tile_size=(64, 64), parallel=True)

result = output_tensor.to_numpy()
expected = input_data.T

print("Transpose error:", np.max(np.abs(result - expected)))

六、性能优化技巧

6.1 自动分块优化

import pypto as pt

# 启用自动分块优化
pt_config = pt.PTOConfig(
    auto_tile=True,              # 自动计算最优分块大小
    tile_alignment=64,           # 分块对齐
    use_cache=True,              # 使用分块缓存
    parallel='auto'              # 自动选择并行策略
)

# 使用优化配置执行
@pt.pto_kernel(config=pt_config)
def optimized_kernel(input_tile: pt.Tile, output_tile: pt.Tile):
    """使用自动优化的核函数"""
    for i in pt.range(input_tile.shape[0]):
        for j in pt.range(input_tile.shape[1]):
            output_tile[i, j] = input_tile[i, j] * 2.0

# 执行
pt.execute(optimized_kernel, input_tensor, output_tensor)

6.2 融合操作

import pypto as pt

# 定义融合操作:Add + ReLU
@pt.pto_kernel
def fused_add_relu(a: pt.Tile, b: pt.Tile, c: pt.Tile):
    """
    融合加法和ReLU操作
    c = relu(a + b)
    """
    for i in pt.range(a.shape[0]):
        for j in pt.range(a.shape[1]):
            val = a[i, j] + b[i, j]
            c[i, j] = pt.max(0.0, val)

# 执行融合操作
pt.execute(fused_add_relu, tensor_a, tensor_b, output_c,
          tile_size=(128, 128),
          fuse_ops=True)  # 启用算子融合

6.3 流水线并行

import pypto as pt

# 定义流水线操作
pipeline = pt.Pipeline()

# 添加计算阶段
@pipeline.add_stage('load')
def load_data(input_tile: pt.Tile):
    """加载数据阶段"""
    return input_tile

@pipeline.add_stage('compute', depends_on=['load'])
def compute(data: pt.Tile):
    """计算阶段"""
    return data * 2.0

@pipeline.add_stage('store', depends_on=['compute'])
def store_data(result: pt.Tile, output_tile: pt.Tile):
    """存储数据阶段"""
    output_tile[:] = result

# 执行流水线
pipeline.execute(input_tensor, output_tensor,
                tile_size=(128, 128),
                num_stages=3)

七、实际应用场景

7.1 图像处理流水线

import pypto as pt
import cv2
import numpy as np

# 读取图像
image = cv2.imread('input.jpg')
image_tensor = pt.Tensor.from_numpy(image.astype(np.float32) / 255.0)

# 定义图像处理流水线
@pt.pto_kernel
def rgb_to_gray(input_tile: pt.Tile, output_tile: pt.Tile):
    """RGB转灰度"""
    for i in pt.range(input_tile.shape[0]):
        for j in pt.range(input_tile.shape[1]):
            r = input_tile[i, j, 0]
            g = input_tile[i, j, 1]
            b = input_tile[i, j, 2]
            gray = 0.299 * r + 0.587 * g + 0.114 * b
            output_tile[i, j] = gray

@pt.pto_kernel
def gaussian_blur(input_tile: pt.Tile, output_tile: pt.Tile, kernel: list):
    """高斯模糊"""
    kh, kw = 3, 3
    for i in pt.range(1, input_tile.shape[0] - 1):
        for j in pt.range(1, input_tile.shape[1] - 1):
            acc = 0.0
            for ki in pt.range(kh):
                for kj in pt.range(kw):
                    ni = i + ki - 1
                    nj = j + kj - 1
                    acc += input_tile[ni, nj] * kernel[ki * kw + kj]
            output_tile[i, j] = acc

# 创建输出张量
gray_tensor = pt.Tensor((image.shape[0], image.shape[1]), dtype=pt.float32)
blur_tensor = pt.Tensor((image.shape[0], image.shape[1]), dtype=pt.float32)

# 执行图像处理
pt.execute(rgb_to_gray, image_tensor, gray_tensor,
          tile_size=(256, 256), parallel=True)

# 高斯核
gaussian_kernel = [1/16, 2/16, 1/16,
                   2/16, 4/16, 2/16,
                   1/16, 2/16, 1/16]

pt.execute(gaussian_blur, gray_tensor, blur_tensor,
          tile_size=(128, 128),
          kwargs={'kernel': gaussian_kernel})

# 获取结果
result = blur_tensor.to_numpy()
cv2.imwrite('output.jpg', (result * 255).astype(np.uint8))

7.2 批处理推理

import pypto as pt

# 批处理矩阵乘法
def batch_matmul(A_list, B_list):
    """
    批量矩阵乘法
    Args:
        A_list: 矩阵A列表
        B_list: 矩阵B列表
    Returns:
        结果列表
    """
    batch_size = len(A_list)
    results = []

    # 创建批处理张量
    batch_A = pt.Tensor((batch_size, *A_list[0].shape), dtype=pt.float32)
    batch_B = pt.Tensor((batch_size, *B_list[0].shape), dtype=pt.float32)
    batch_C = pt.Tensor((batch_size, A_list[0].shape[0], B_list[0].shape[1]), dtype=pt.float32)

    # 填充数据
    for i, (A, B) in enumerate(zip(A_list, B_list)):
        batch_A[i].from_numpy(A)
        batch_B[i].from_numpy(B)

    # 执行批量矩阵乘法
    @pt.pto_kernel
    def batch_matmul_kernel(A_batch: pt.Tile, B_batch: pt.Tile, C_batch: pt.Tile):
        for b in pt.range(A_batch.shape[0]):
            for i in pt.range(A_batch.shape[1]):
                for j in pt.range(B_batch.shape[2]):
                    acc = 0.0
                    for k in pt.range(A_batch.shape[2]):
                        acc += A_batch[b, i, k] * B_batch[b, k, j]
                    C_batch[b, i, j] = acc

    pt.execute(batch_matmul_kernel, batch_A, batch_B, batch_C,
              tile_size=(4, 64, 64), parallel=True)

    # 获取结果
    for i in range(batch_size):
        results.append(batch_C[i].to_numpy())

    return results

八、性能优化建议

  1. 合理选择分块大小:根据Local Memory大小和数据局部性选择合适的分块
  2. 利用向量化:使用pypto提供的向量化操作替代循环
  3. 减少内存访问:尽量重用已加载的数据
  4. 使用融合操作:将多个操作融合为一个核函数
  5. 启用自动优化:利用pypto的自动优化功能

九、总结

pypto作为CANN生态系统中的创新编程范式,为开发者提供了一种更直观、更高效的张量计算编程方式。通过分块操作和并行计算的抽象,pypto大大降低了NPU编程的复杂度,同时保持了接近底层编程的性能。本文通过丰富的示例代码展示了pypto的核心功能和高级特性,帮助开发者快速掌握这一强大的编程工具。

相关链接:

  • CANN组织链接:https://atomgit.com/cann
  • pypto仓库链接:https://atomgit.com/cann/pypto
Logo

昇腾计算产业是基于昇腾系列(HUAWEI Ascend)处理器和基础软件构建的全栈 AI计算基础设施、行业应用及服务,https://devpress.csdn.net/organization/setting/general/146749包括昇腾系列处理器、系列硬件、CANN、AI计算框架、应用使能、开发工具链、管理运维工具、行业应用及服务等全产业链

更多推荐