CANN计算机视觉算子库ops-cv的图像处理与特征提取优化实践
计算机视觉是人工智能应用最广泛的领域之一,涵盖图像分类、目标检测、语义分割、视频分析等多种任务。这些任务的基础是高效的图像处理和特征提取算子。CANN的ops-cv库提供了丰富的计算机视觉算子,针对NPU硬件进行了深度优化,能够显著提升视觉应用的性能。
·
CANN计算机视觉算子库ops-cv的图像处理与特征提取优化实践
前言
计算机视觉是人工智能应用最广泛的领域之一,涵盖图像分类、目标检测、语义分割、视频分析等多种任务。这些任务的基础是高效的图像处理和特征提取算子。CANN的ops-cv库提供了丰富的计算机视觉算子,针对NPU硬件进行了深度优化,能够显著提升视觉应用的性能。
相关链接:
- CANN组织链接:https://atomgit.com/cann
- ops-cv仓库链接:https://atomgit.com/cann/ops-cv
一、ops-cv库概述
1.1 设计理念
ops-cv(Computer Vision Operators)是CANN框架中专门用于计算机视觉任务的算子库,其设计理念包括:
- 硬件感知优化:针对NPU的向量计算单元和内存层次结构优化
- 算子融合支持:支持多算子融合减少内存访问
- 多格式支持:支持RGB、BGR、GRAY、YUV等多种图像格式
- 精度灵活:支持FP32、FP16、INT8等多种精度计算
1.2 核心算子分类
ops-cv/
├── 图像预处理算子
│ ├── 图像缩放 (Resize)
│ ├── 图像裁剪 (Crop)
│ ├── 图像翻转 (Flip)
│ ├── 图像旋转 (Rotate)
│ └── 填充 (Pad)
├── 颜色空间转换
│ ├── RGB2BGR
│ ├── RGB2GRAY
│ ├── RGB2YUV
│ └── YUV2RGB
├── 特征提取算子
│ ├── 卷积 (Conv2D)
│ ├── 池化 (Pool2D)
│ ├── 激活 (Activation)
│ └── 归一化 (Normalize)
├── 图像增强算子
│ ├── 亮度调整
│ ├── 对比度调整
│ ├── 饱和度调整
│ └── 直方图均衡化
└── 视频处理算子
├── 光流计算
├── 帧差分
└── 视频稳定
二、核心API详解
2.1 图像预处理API
图像缩放
图像缩放是计算机视觉中最常用的预处理操作,ops-cv提供了多种插值算法:
/**
* @brief 图像缩放算子
* @param input 输入图像张量 [N, C, H, W]
* @param output 输出图像张量
* @param output_size 目标尺寸 (height, width)
* @param mode 插值模式: 0=最近邻, 1=双线性, 2=双三次, 3=面积插值
* @param align_corners 是否对齐角点
* @param workspace 工作空间指针
* @param workspace_size 工作空间大小
* @return 状态码
*/
ACL_FUNC_VISIBILITY aclError aclnn_cv_resize(
const aclTensor* input,
aclTensor* output,
const int64_t output_size[2],
ResizeMode mode,
bool align_corners,
void* workspace,
uint64_t workspace_size);
// 插值模式枚举
enum ResizeMode {
RESIZE_NEAREST_NEIGHBOR = 0, // 最近邻插值 - 速度快
RESIZE_BILINEAR = 1, // 双线性插值 - 平衡
RESIZE_BICUBIC = 2, // 双三次插值 - 质量高
RESIZE_AREA = 3 // 面积插值 - 缩小图像效果好
};
图像裁剪
/**
* @brief 图像裁剪算子
* @param input 输入图像 [N, C, H, W]
* @param output 输出图像
* @param top 裁剪起始行
* @param left 裁剪起始列
* @param height 裁剪高度
* @param width 裁剪宽度
*/
ACL_FUNC_VISIBILITY aclError aclnn_cv_crop(
const aclTensor* input,
aclTensor* output,
int64_t top,
int64_t left,
int64_t height,
int64_t width);
图像翻转
/**
* @brief 图像翻转算子
* @param input 输入图像
* @param output 输出图像
* @param flip_code 翻转模式
* >0: 水平翻转 (沿y轴)
* =0: 垂直翻转 (沿x轴)
* <0: 水平垂直同时翻转
*/
ACL_FUNC_VISIBILITY aclError aclnn_cv_flip(
const aclTensor* input,
aclTensor* output,
int flip_code);
2.2 颜色空间转换API
/**
* @brief 颜色空间转换算子
* @param input 输入图像
* @param output 输出图像
* @param src_format 源颜色格式
* @param dst_format 目标颜色格式
* @param workspace 工作空间
* @param workspace_size 工作空间大小
*/
ACL_FUNC_VISIBILITY aclError aclnn_cv_cvtColor(
const aclTensor* input,
aclTensor* output,
ColorFormat src_format,
ColorFormat dst_format,
void* workspace,
uint64_t workspace_size);
// 颜色格式枚举
enum ColorFormat {
COLOR_RGB = 0, // RGB格式
COLOR_BGR = 1, // BGR格式
COLOR_GRAY = 2, // 灰度格式
COLOR_YUV = 3, // YUV格式
COLOR_HSV = 4, // HSV格式
COLOR_LAB = 5 // LAB格式
};
2.3 特征提取API
/**
* @brief 特征金字塔算子 - 用于多尺度特征提取
* @param input 输入特征图
* @param outputs 输出特征金字塔数组
* @param num_levels 金字塔层数
* @param pyramid_mode 金字塔模式
*/
ACL_FUNC_VISIBILITY aclError aclnn_cv_feature_pyramid(
const aclTensor* input,
aclTensor** outputs,
int num_levels,
PyramidMode pyramid_mode);
// 金字塔模式
enum PyramidMode {
PYRAMID_FPN = 0, // Feature Pyramid Network
PYRAMID_PAN = 1, // Path Aggregation Network
PYRAMID_BIFPN = 2 // Bidirectional FPN
};
/**
* @brief 非极大值抑制 - 用于目标检测后处理
* @param boxes 检测框 [N, 4] (x1, y1, x2, y2)
* @param scores 置信度分数 [N]
* @param output_boxes 输出检测框
* @param output_scores 输出分数
* @param iou_threshold IoU阈值
* @param max_output_size 最大输出数量
*/
ACL_FUNC_VISIBILITY aclError aclnn_cv_nms(
const aclTensor* boxes,
const aclTensor* scores,
aclTensor* output_boxes,
aclTensor* output_scores,
float iou_threshold,
int max_output_size);
2.4 高级视觉API
/**
* @brief RoI Align算子 - 用于实例分割
* @param input 输入特征图
* @param rois RoI坐标 [N, 5] (batch_index, x1, y1, x2, y2)
* @param output 输出RoI特征
* @param pooled_height 输出高度
* @param pooled_width 输出宽度
* @param spatial_scale 空间缩放因子
* @param sampling_ratio 采样率
* @param aligned 是否对齐
*/
ACL_FUNC_VISIBILITY aclError aclnn_cv_roi_align(
const aclTensor* input,
const aclTensor* rois,
aclTensor* output,
int pooled_height,
int pooled_width,
float spatial_scale,
int sampling_ratio,
bool aligned);
/**
* @brief 光流计算算子 - 用于视频分析
* @param images1 第一帧图像
* @param images2 第二帧图像
* @param flow 输出光流场 (u, v)
* @param flow_method 光流计算方法
*/
ACL_FUNC_VISIBILITY aclError aclnn_cv_optical_flow(
const aclTensor* images1,
const aclTensor* images2,
aclTensor* flow,
OpticalFlowMethod flow_method);
// 光流计算方法
enum OpticalFlowMethod {
FLOW_FARNEBACK = 0, // Farneback算法
FLOW_PYR_LK = 1, // 金字塔Lucas-Kanade
FLOW_RAFT = 2 // RAFT深度学习算法
};
三、应用实践
3.1 图像预处理流水线
以下是一个完整的图像预处理流水线示例,展示如何组合多个ops-cv算子:
#include "acl/acl.h"
#include "aclnnops/aclnn_cv.h"
class ImagePreprocessor {
public:
ImagePreprocessor(int device_id) : device_id_(device_id) {
// 初始化设备
aclError ret = aclrtSetDevice(device_id_);
CHECK_RET(ret == ACL_SUCCESS, "aclrtSetDevice failed");
// 创建stream
ret = aclrtCreateStream(&stream_);
CHECK_RET(ret == ACL_SUCCESS, "aclrtCreateStream failed");
}
~ImagePreprocessor() {
aclrtDestroyStream(stream_);
aclrtResetDevice(device_id_);
}
// 完整的预处理流水线
void Process(const cv::Mat& input_image,
aclTensor** output_tensor,
int target_height = 224,
int target_width = 224) {
// 1. 将OpenCV Mat转换为ACL张量
aclTensor* input_tensor = MatToACLTensor(input_image);
// 2. 颜色空间转换 BGR -> RGB
aclTensor* rgb_tensor = nullptr;
aclnn_cv_cvtColor(input_tensor, rgb_tensor,
COLOR_BGR, COLOR_RGB,
workspace_, workspace_size_);
// 3. 调整图像大小
int64_t output_size[2] = {target_height, target_width};
aclTensor* resized_tensor = nullptr;
aclnn_cv_resize(rgb_tensor, resized_tensor, output_size,
RESIZE_BILINEAR, true, workspace_, workspace_size_);
// 4. 归一化
aclTensor* normalized_tensor = Normalize(resized_tensor);
// 5. 数据布局转换 HWC -> CHW
aclTensor* chw_tensor = nullptr;
aclnn_cv_transpose(normalized_tensor, chw_tensor,
{0, 3, 1, 2}, workspace_, workspace_size_);
*output_tensor = chw_tensor;
// 清理中间张量
DestroyTensor(input_tensor);
DestroyTensor(rgb_tensor);
DestroyTensor(resized_tensor);
DestroyTensor(normalized_tensor);
}
private:
aclTensor* MatToACLTensor(const cv::Mat& image) {
// 获取图像尺寸
int height = image.rows;
int width = image.cols;
int channels = image.channels();
// 创建张量描述
int64_t dims[4] = {1, height, width, channels};
aclDataType dtype = ACL_FLOAT32;
aclFormat format = ACL_FORMAT_NHWC;
aclTensorDesc* desc = aclCreateTensorDesc(dtype, 4, dims, format);
// 分配设备内存
void* dev_ptr = nullptr;
size_t data_size = height * width * channels * sizeof(float);
aclrtMalloc(&dev_ptr, data_size, ACL_MEM_MALLOC_HUGE_FIRST);
// 拷贝数据到设备
std::vector<float> data;
cv::Mat float_image;
image.convertTo(float_image, CV_32F);
data.assign((float*)float_image.data,
(float*)float_image.data + height * width * channels);
aclrtMemcpy(dev_ptr, data_size, data.data(), data_size,
ACL_MEMCPY_HOST_TO_DEVICE);
// 创建张量
return aclCreateTensor(desc, dev_ptr);
}
aclTensor* Normalize(aclTensor* input) {
// 定义归一化参数 (ImageNet标准化)
float mean[3] = {0.485f, 0.456f, 0.406f};
float std[3] = {0.229f, 0.224f, 0.225f};
// 创建输出张量
aclTensor* output = CloneTensorShape(input);
// 执行归一化: (x - mean) / std
aclnn_cv_normalize(input, output, mean, std, 3,
workspace_, workspace_size_);
return output;
}
void DestroyTensor(aclTensor* tensor) {
if (tensor) {
void* dev_ptr = aclGetTensorBuffer(tensor);
aclTensorDesc* desc = aclGetTensorDesc(tensor);
aclrtFree(dev_ptr);
aclDestroyTensorDesc(desc);
aclDestroyTensor(tensor);
}
}
int device_id_;
aclrtStream stream_;
void* workspace_;
uint64_t workspace_size_;
};
3.2 目标检测后处理流水线
class DetectionPostProcessor {
public:
struct DetectionResult {
cv::Rect box; // 检测框
float score; // 置信度
int class_id; // 类别ID
std::string label; // 类别标签
};
// 完整的目标检测后处理
std::vector<DetectionResult> Process(
const aclTensor* class_predictions, // [N, num_classes]
const aclTensor* box_predictions, // [N, 4]
const aclTensor* box_confidences, // [N]
const std::vector<std::string>& class_labels,
float conf_threshold = 0.5f,
float nms_threshold = 0.45f) {
// 1. 应用置信度阈值过滤
std::vector<int> valid_indices;
FilterByConfidence(box_confidences, conf_threshold, valid_indices);
// 2. 获取类别预测
std::vector<int> class_ids;
std::vector<float> max_scores;
GetMaxClassScores(class_predictions, valid_indices, class_ids, max_scores);
// 3. 解码检测框
std::vector<cv::Rect> boxes;
DecodeBoxes(box_predictions, valid_indices, boxes);
// 4. 对每个类别分别应用NMS
std::vector<DetectionResult> results;
for (int cls_id = 0; cls_id < class_labels.size(); ++cls_id) {
std::vector<int> class_indices;
for (size_t i = 0; i < class_ids.size(); ++i) {
if (class_ids[i] == cls_id) {
class_indices.push_back(i);
}
}
if (class_indices.empty()) continue;
// 提取当前类别的检测框和分数
std::vector<cv::Rect> class_boxes;
std::vector<float> class_scores;
for (int idx : class_indices) {
class_boxes.push_back(boxes[idx]);
class_scores.push_back(max_scores[idx]);
}
// 应用NMS
std::vector<int> nms_indices;
ApplyNMS(class_boxes, class_scores, nms_threshold, nms_indices);
// 保存结果
for (int idx : nms_indices) {
DetectionResult result;
result.box = class_boxes[idx];
result.score = class_scores[idx];
result.class_id = cls_id;
result.label = class_labels[cls_id];
results.push_back(result);
}
}
return results;
}
private:
void FilterByConfidence(const aclTensor* confidences,
float threshold,
std::vector<int>& valid_indices) {
// 获取置信度数据
void* conf_ptr = aclGetTensorBuffer(confidences);
size_t conf_size = GetTensorSize(confidences);
std::vector<float> conf_data(conf_size);
aclrtMemcpy(conf_data.data(), conf_size * sizeof(float),
conf_ptr, conf_size * sizeof(float),
ACL_MEMCPY_DEVICE_TO_HOST);
// 过滤
for (size_t i = 0; i < conf_data.size(); ++i) {
if (conf_data[i] >= threshold) {
valid_indices.push_back(i);
}
}
}
void GetMaxClassScores(const aclTensor* predictions,
const std::vector<int>& indices,
std::vector<int>& class_ids,
std::vector<float>& max_scores) {
// 获取预测数据
void* pred_ptr = aclGetTensorBuffer(predictions);
int num_preds = indices.size();
int num_classes = GetTensorDimension(predictions, 1);
std::vector<float> pred_data(num_preds * num_classes);
aclrtMemcpy(pred_data.data(), pred_data.size() * sizeof(float),
pred_ptr, pred_data.size() * sizeof(float),
ACL_MEMCPY_DEVICE_TO_HOST);
// 对每个预测找到最大类别
for (size_t i = 0; i < indices.size(); ++i) {
float max_score = -std::numeric_limits<float>::max();
int max_class = 0;
for (int c = 0; c < num_classes; ++c) {
float score = pred_data[i * num_classes + c];
if (score > max_score) {
max_score = score;
max_class = c;
}
}
class_ids.push_back(max_class);
max_scores.push_back(max_score);
}
}
void DecodeBoxes(const aclTensor* box_predictions,
const std::vector<int>& indices,
std::vector<cv::Rect>& boxes) {
// 获取预测框数据
void* box_ptr = aclGetTensorBuffer(box_predictions);
for (int idx : indices) {
float box_coords[4];
aclrtMemcpy(box_coords, sizeof(box_coords),
(float*)box_ptr + idx * 4, sizeof(box_coords),
ACL_MEMCPY_DEVICE_TO_HOST);
boxes.push_back(cv::Rect(
cv::Point(box_coords[0], box_coords[1]),
cv::Point(box_coords[2], box_coords[3])
));
}
}
void ApplyNMS(const std::vector<cv::Rect>& boxes,
const std::vector<float>& scores,
float iou_threshold,
std::vector<int>& keep_indices) {
// 按分数降序排序
std::vector<int> sorted_indices(scores.size());
std::iota(sorted_indices.begin(), sorted_indices.end(), 0);
std::sort(sorted_indices.begin(), sorted_indices.end(),
[&scores](int a, int b) { return scores[a] > scores[b]; });
std::vector<bool> suppressed(scores.size(), false);
for (size_t i = 0; i < sorted_indices.size(); ++i) {
int idx = sorted_indices[i];
if (suppressed[idx]) continue;
keep_indices.push_back(idx);
// 抑制重叠框
for (size_t j = i + 1; j < sorted_indices.size(); ++j) {
int other_idx = sorted_indices[j];
if (suppressed[other_idx]) continue;
float iou = ComputeIoU(boxes[idx], boxes[other_idx]);
if (iou > iou_threshold) {
suppressed[other_idx] = true;
}
}
}
}
float ComputeIoU(const cv::Rect& a, const cv::Rect& b) {
cv::Rect intersection = a & b;
cv::Rect union_rect = a | b;
float intersection_area = intersection.area();
float union_area = union_rect.area();
return intersection_area / union_area;
}
};
3.3 特征金字塔网络实现
class FeaturePyramidNetwork {
public:
FeaturePyramidNetwork(int num_levels = 5)
: num_levels_(num_levels) {}
// 构建特征金字塔
std::vector<aclTensor*> BuildFPN(
const std::vector<aclTensor*>& bottom_up_features) {
// bottom_up_features: [C3, C4, C5]
// 返回: [P2, P3, P4, P5, P6]
std::vector<aclTensor*> pyramid(num_levels_);
// 1. 自顶向下路径
// P5来自C5的1x1卷积
pyramid[4] = Apply1x1Conv(bottom_up_features[2]);
// 2. 横向连接和上采样
// P4: Upsample(P5) + 1x1Conv(C4)
aclTensor* p5_upsampled = Upsample(pyramid[4],
bottom_up_features[1]->shape);
aclTensor* c4_proj = Apply1x1Conv(bottom_up_features[1]);
pyramid[3] = ElementwiseAdd(p5_upsampled, c4_proj);
// P3: Upsample(P4) + 1x1Conv(C3)
aclTensor* p4_upsampled = Upsample(pyramid[3],
bottom_up_features[0]->shape);
aclTensor* c3_proj = Apply1x1Conv(bottom_up_features[0]);
pyramid[2] = ElementwiseAdd(p4_upsampled, c3_proj);
// 3. P6: P5的3x3 stride-2池化
pyramid[5] = MaxPool3x3Stride2(pyramid[4]);
// 4. P2: P3的上采样
aclTensor* p3_upsampled = Upsample(pyramid[2],
bottom_up_features[0]->shape * 2);
pyramid[1] = p3_upsampled;
// 5. 对所有层级应用3x3卷积
for (int i = 1; i < num_levels_; ++i) {
pyramid[i] = Apply3x3Conv(pyramid[i]);
}
return pyramid;
}
// 双向特征金字塔网络
std::vector<aclTensor*> BuildBiFPN(
std::vector<aclTensor*>& features,
int num_repeat = 2) {
for (int repeat = 0; repeat < num_repeat; ++repeat) {
// 自顶向下
for (int i = features.size() - 2; i >= 0; --i) {
aclTensor* upsampled = Upsample(features[i + 1],
features[i]->shape);
features[i] = FastNormalizedConcat(
{features[i], upsampled});
features[i] = Apply3x3Conv(features[i]);
}
// 自底向上
for (size_t i = 1; i < features.size(); ++i) {
aclTensor* downsampled = Downsample(features[i - 1],
features[i]->shape);
features[i] = FastNormalizedConcat(
{features[i], downsampled});
features[i] = Apply3x3Conv(features[i]);
}
}
return features;
}
private:
aclTensor* Apply1x1Conv(aclTensor* input) {
int out_channels = 256;
aclTensor* output = nullptr;
aclnn_cv_conv2d(input, nullptr, // input, bias
nullptr, // filter (自动创建1x1卷积核)
output, out_channels,
{1, 1}, // kernel_size
{0, 0}, // padding
{1, 1}, // stride
{1, 1}, // dilation
1, // groups
false, // bias
workspace_, workspace_size_);
return output;
}
aclTensor* Apply3x3Conv(aclTensor* input) {
int out_channels = 256;
aclTensor* output = nullptr;
aclnn_cv_conv2d(input, nullptr, nullptr, output,
out_channels, {3, 3},
{1, 1}, {1, 1}, {1, 1},
1, false, workspace_, workspace_size_);
return output;
}
aclTensor* Upsample(aclTensor* input,
const std::vector<int64_t>& target_shape) {
aclTensor* output = nullptr;
int64_t size[2] = {target_shape[2], target_shape[3]};
aclnn_cv_resize(input, output, size, RESIZE_NEAREST_NEIGHBOR,
false, workspace_, workspace_size_);
return output;
}
aclTensor* Downsample(aclTensor* input,
const std::vector<int64_t>& target_shape) {
aclTensor* output = nullptr;
int64_t size[2] = {target_shape[2], target_shape[3]};
aclnn_cv_resize(input, output, size, RESIZE_AREA,
false, workspace_, workspace_size_);
return output;
}
aclTensor* ElementwiseAdd(aclTensor* a, aclTensor* b) {
aclTensor* output = nullptr;
aclnn_cv_add(a, b, output, workspace_, workspace_size_);
return output;
}
aclTensor* FastNormalizedConcat(const std::vector<aclTensor*>& inputs) {
// 计算权重
std::vector<float> weights(inputs.size(), 1.0f / inputs.size());
// 加权求和
aclTensor* output = nullptr;
aclnn_cv_weighted_sum(inputs.data(), weights.data(),
inputs.size(), output,
workspace_, workspace_size_);
return output;
}
aclTensor* MaxPool3x3Stride2(aclTensor* input) {
aclTensor* output = nullptr;
aclnn_cv_maxpool2d(input, output,
{3, 3}, // kernel_size
{1, 1}, // padding
{2, 2}, // stride
false, // ceil_mode
workspace_, workspace_size_);
return output;
}
int num_levels_;
void* workspace_;
uint64_t workspace_size_;
};
3.4 视频分析应用
class VideoAnalyzer {
public:
// 光流跟踪
std::vector<cv::Point2f> TrackOpticalFlow(
const cv::Mat& prev_frame,
const cv::Mat& curr_frame,
const std::vector<cv::Point2f>& prev_points) {
// 转换为ACL张量
aclTensor* prev_tensor = MatToTensor(prev_frame);
aclTensor* curr_tensor = MatToTensor(curr_frame);
// 计算稠密光流
aclTensor* flow_tensor = nullptr;
aclnn_cv_optical_flow(prev_tensor, curr_tensor, flow_tensor,
FLOW_RAFT, workspace_, workspace_size_);
// 在关键点处提取光流
std::vector<cv::Point2f> curr_points;
for (const auto& pt : prev_points) {
int x = static_cast<int>(pt.x);
int y = static_cast<int>(pt.y);
// 获取光流向量
float flow_uv[2];
ExtractFlowAtPoint(flow_tensor, x, y, flow_uv);
// 计算新位置
curr_points.push_back(cv::Point2f(
pt.x + flow_uv[0],
pt.y + flow_uv[1]
));
}
// 清理
DestroyTensor(prev_tensor);
DestroyTensor(curr_tensor);
DestroyTensor(flow_tensor);
return curr_points;
}
// 背景建模与运动检测
cv::Mat DetectMotion(const cv::Mat& frame, int history = 500) {
static cv::Ptr<cv::BackgroundSubtractorMOG2> bg_subtractor =
cv::createBackgroundSubtractorMOG2(history, 16, true);
cv::Mat fg_mask;
bg_subtractor->apply(frame, fg_mask);
// 使用形态学操作去噪
cv::Mat kernel = cv::getStructuringElement(
cv::MORPH_ELLIPSE, cv::Size(5, 5));
cv::morphologyEx(fg_mask, fg_mask, cv::MORPH_CLOSE, kernel);
return fg_mask;
}
// 视频稳定
cv::Mat StabilizeFrame(const cv::Mat& frame,
const cv::Mat& prev_gray,
std::vector<cv::Point2f>& prev_points) {
cv::Mat gray;
cv::cvtColor(frame, gray, cv::COLOR_BGR2GRAY);
if (prev_points.empty()) {
// 初始化关键点
cv::goodFeaturesToTrack(gray, prev_points, 200, 0.01, 30);
return frame.clone();
}
// 计算光流
std::vector<cv::Point2f> curr_points;
std::vector<uchar> status;
std::vector<float> err;
cv::calcOpticalFlowPyrLK(prev_gray, gray, prev_points,
curr_points, status, err);
// 过滤有效点
std::vector<cv::Point2f> valid_prev, valid_curr;
for (size_t i = 0; i < status.size(); ++i) {
if (status[i]) {
valid_prev.push_back(prev_points[i]);
valid_curr.push_back(curr_points[i]);
}
}
if (valid_prev.size() < 10) {
return frame.clone();
}
// 估计仿射变换
cv::Mat transform = cv::estimateAffinePartial2D(
valid_curr, valid_prev);
// 应用变换进行稳定
cv::Mat stabilized;
if (!transform.empty()) {
cv::warpAffine(frame, stabilized, transform, frame.size());
} else {
stabilized = frame.clone();
}
// 更新状态
prev_points = curr_points;
return stabilized;
}
private:
void ExtractFlowAtPoint(aclTensor* flow, int x, int y, float* flow_uv) {
int width = GetTensorDimension(flow, 3);
int height = GetTensorDimension(flow, 2);
void* flow_ptr = aclGetTensorBuffer(flow);
int offset = (y * width + x) * 2;
aclrtMemcpy(flow_uv, 2 * sizeof(float),
(float*)flow_ptr + offset, 2 * sizeof(float),
ACL_MEMCPY_DEVICE_TO_HOST);
}
aclTensor* MatToTensor(const cv::Mat& image) {
// 简化版本,实际需要完整实现
return nullptr;
}
void DestroyTensor(aclTensor* tensor) {
if (tensor) {
aclDestroyTensor(tensor);
}
}
void* workspace_;
uint64_t workspace_size_;
};
四、性能优化技巧
4.1 算子融合优化
// 预处理融合算子: Resize + Normalize + Transpose
class FusedPreprocess {
public:
aclError Execute(const cv::Mat& input,
aclTensor* output,
int target_height,
int target_width) {
// 调用融合算子,一次完成所有预处理
return aclnn_cv_fused_preprocess(
input.data, input.cols, input.rows, input.channels(),
output, target_height, target_width,
mean_, std_, workspace_, workspace_size_);
}
private:
float mean_[3] = {0.485f, 0.456f, 0.406f};
float std_[3] = {0.229f, 0.224f, 0.225f};
void* workspace_;
uint64_t workspace_size_;
};
4.2 批处理优化
// 批量图像预处理
class BatchImagePreprocessor {
public:
void ProcessBatch(const std::vector<cv::Mat>& images,
std::vector<aclTensor*>& outputs) {
// 分配批处理内存
size_t batch_size = images.size();
size_t batch_bytes = batch_size * image_size_ * sizeof(float);
void* batch_buffer;
aclrtMalloc(&batch_buffer, batch_bytes, ACL_MEM_MALLOC_HUGE_FIRST);
// 并行处理
#pragma omp parallel for
for (size_t i = 0; i < images.size(); ++i) {
void* img_buffer = (char*)batch_buffer + i * image_size_ * sizeof(float);
ProcessSingle(images[i], img_buffer);
}
// 创建批处理张量
int64_t dims[4] = {static_cast<int64_t>(batch_size), 3, 224, 224};
outputs[0] = CreateBatchTensor(batch_buffer, dims);
// 释放临时内存
aclrtFree(batch_buffer);
}
private:
void ProcessSingle(const cv::Mat& image, void* output) {
// 单个图像处理逻辑
}
aclTensor* CreateBatchTensor(void* buffer, const int64_t* dims) {
// 创建批处理张量
return nullptr;
}
size_t image_size_ = 3 * 224 * 224;
};
4.3 内存池优化
class TensorMemoryPool {
public:
TensorMemoryPool(size_t pool_size = 1024 * 1024 * 1024) // 1GB
: pool_size_(pool_size) {
aclrtMalloc(&pool_base_, pool_size_, ACL_MEM_MALLOC_HUGE_FIRST);
offset_ = 0;
}
~TensorMemoryPool() {
aclrtFree(pool_base_);
}
void* Allocate(size_t size) {
if (offset_ + size > pool_size_) {
Reset();
}
void* ptr = (char*)pool_base_ + offset_;
offset_ += size;
return ptr;
}
void Reset() {
offset_ = 0;
}
private:
void* pool_base_;
size_t pool_size_;
size_t offset_;
};
五、总结
ops-cv库为计算机视觉应用提供了全面的算子支持,从基础的图像预处理到高级的特征提取和视频分析。通过合理使用这些算子,结合算子融合、批处理和内存优化等技巧,可以构建高效的视觉处理流水线,充分发挥NPU硬件的计算能力。
在实际应用中,建议:
- 优先使用融合算子减少内存访问
- 合理组织数据布局提高缓存利用率
- 根据精度需求选择合适的数据类型
- 使用异步执行实现计算与传输重叠
相关链接:
- CANN组织链接:https://atomgit.com/cann
- ops-cv仓库链接:https://atomgit.com/cann/ops-cv
昇腾计算产业是基于昇腾系列(HUAWEI Ascend)处理器和基础软件构建的全栈 AI计算基础设施、行业应用及服务,https://devpress.csdn.net/organization/setting/general/146749包括昇腾系列处理器、系列硬件、CANN、AI计算框架、应用使能、开发工具链、管理运维工具、行业应用及服务等全产业链
更多推荐
所有评论(0)