caffe入门1-----------如何使用caffe训练好的模型
import caffeimport cv2import sysimport matplotlib.pyplot as plt#import Imagedef deploy(img_path):caffe.set_mode_gpu()MODEL_JOB_DIR = '/dli/data/digits/20180301-185638-e918'DATAS...
·
import caffe
import cv2
import sys
import matplotlib.pyplot as plt
#import Image
def deploy(img_path):
caffe.set_mode_gpu()
MODEL_JOB_DIR = '/dli/data/digits/20180301-185638-e918'
DATASET_JOB_DIR = '/dli/data/digits/20180222-165843-ada0'
ARCHITECTURE = MODEL_JOB_DIR + '/deploy.prototxt'
WEIGHTS = MODEL_JOB_DIR + '/snapshot_iter_735.caffemodel'
# Initialize the Caffe model using the model trained in DIGITS.
net = caffe.Classifier(ARCHITECTURE, WEIGHTS,
channel_swap=(2,1,0),
raw_scale=255,
image_dims=(256, 256))
# Create an input that the network expects.
input_image= caffe.io.load_image(img_path)
test_image = cv2.resize(input_image, (256,256))
mean_image = caffe.io.load_image(DATASET_JOB_DIR + '/mean.jpg')
test_image = test_image-mean_image
prediction = net.predict([test_image])
#print("Input Image:")
#plt.imshow(sys.argv[1])
#plt.show()
#Image.open(input_image).show()
print(prediction)
##Create a useful output
print("Output:")
if prediction.argmax()==0:
print "Sorry cat:( https://media.giphy.com/media/jb8aFEQk3tADS/giphy.gif"
else:
print "Welcome dog! https://www.flickr.com/photos/aidras/5379402670"
##Ignore this part
if __name__ == '__main__':
print(deploy(sys.argv[1]))
训练好的模型 包含 网络结构和数据权重两部分。加载进来进行调用。
昇腾计算产业是基于昇腾系列(HUAWEI Ascend)处理器和基础软件构建的全栈 AI计算基础设施、行业应用及服务,https://devpress.csdn.net/organization/setting/general/146749包括昇腾系列处理器、系列硬件、CANN、AI计算框架、应用使能、开发工具链、管理运维工具、行业应用及服务等全产业链
更多推荐

所有评论(0)